Showing posts with label Peano Axioms. Show all posts
Showing posts with label Peano Axioms. Show all posts

Wednesday, January 21, 2009

Ed Schenk Predestination / Karma / Reincarnation


The following text are expressions by the Dutch Mathematical Poet, Ed Schenk

Predestination / karma / reincarnation

Some agnostics define death as:
death = life – life axiom 1)

In many religions the believe is there is something after or above death. This could be written as:
death ≠ 0 axiom 2)

Now if axiom 1 and axiom 2 are simultaneous valid, this leads to the postulate:
life ≠ life

This looks contradictory, however if we introduce the element time, axiom 1 could be written as:
death = life(n+1) – life(n),
where n is the current life. Moving variables yields: life(n+1) = life(n) + death. This could be written as:

next life = this life + death (predestination)

or

this life = next life – death This formula looks a bit strange, however this is due to semantics. If we take into account that time is not necessarily linear we could replace the word ‘next’ by the word ‘another’.

This leads to: this life = another life – death (karma)

Friday, February 15, 2008

Axiomatic Poems


This is a page devoted to collect information on axiomatic poems.

Introduction to axiomatic poems -- Peano’s string; a history of spiritual stories.

Axiomatic Poems part two -- More structure added to Peano’s string; a history of spiritual stories.

The addition of another stanza and creating a metamorphic poem.

Proof that no cat is the God of itself (Peano’s proof by Professor Ray Balbes)

Tuesday, February 05, 2008

Axiomatic Poems Part Two


I have been having some wonderful conversations with the mathematician Ray Balbes. Ray has been asking some very important questions concerning the axiomatic poem. Ray has also helped me by correcting mathematical errors in my nomenclature.

Ray also has had concerns with the idea of God being a viable substitute for successor within the Peano axioms. For God in this sense must be comparable to a mathematical function. I personally have no problem with this idea for my understanding of the word God is metaphorical anyway. Therefore, I can see this metaphoric structure of “God IS mathematical function” as being nested e.g. metaphors within metaphors. The question then would be is God a mathematical function? Alternatively, can we say God functions mathematically? Historically God is described beyond language so I would not try to convince anyone otherwise. I personally do not see God functioning mathematically as a mathematical Platonist would however, I do see the accessibility of ideas mathematically expressed as phenomena attributed to a deity. I believe if you denote phenomena with words, you can do the same with math. Furthermore, I would go on to say that if you can be inspired to connote it with words you can do the same with math for those type of inspirations fuel mathematical poetry.

Therefore, the poem addresses the dichotomy of God being created by men or men being created by God.

To help anyone see how the logic in Peano’s axioms is functioning correctly in the Blog entry of January 29th, I created another axiomatic poem to show some more structure. The disadvantage to creating another ‘equal’ poem is that the new poem focuses the semantics in such a way that limits the metaphorical content. The advantage is that it gives more semantic structure, which enables one to see the Peano logic with ease. So in essence, we now have an axiomatic poem, which has metamorphic qualities. We see that the Peano axioms function as the underlying paradigm for the poem however, it could be viewed as the source domain with the other two ‘axiomatic stanzas’ as the target domains for the ‘overall metaphor’. In this case, we have three structures separated by two equal signs.

The Peano Axioms

  1. One is a number
  2. If x is a number, the successor of x is also a number.
  3. One is not the successor of any number.
  4. If two numbers have equal successors, they are equal.
  5. If a set of numbers contains the number one and it contains all the successors of its members then the set contains all the numbers

Poem #1 -- Peano’s string; a history of spiritual stories

  1. Abraham is a story
  2. If x is a story, the unique inspiration of x is also a story.
  3. Abraham is not the unique inspiration of any story
  4. If two stories have equal unique inspiration, they are equal.
  5. If a set of stories contains the story Abraham and it contains all the unique inspirations of its members then the set contains all the stories.


Poem #2 -- Peano’s string; a history of spiritual stories

  1. Abraham is a cat
  2. If x is a cat, the God of x is also a cat.
  3. Abraham is not the God of any cat.
  4. If two cats have equal Gods, they are equal.
  5. If a set of cats contains the cat Abraham and it contains all the Gods of its members then the set contains all the cats.

Poem #1 = Poem#2

Tuesday, January 29, 2008

Axiomatic Poems



Peano’s string; a history of spiritual stories (Image above)


Axiomatic Poems

I would like to introduce a new mathematical structure to be used with mathematical poetry.

I understand that for two thousand years Euclid’s axioms stood alone as a meaningful axiomatic system. However, in 1889 Italian mathematician Giuseppe Peano created a new axiomatic system based on two primitive notions and the five following statements:

1. One is a number
2. If x is a number, the successor of x is also a number.
3. One is not the successor of any number.
4. If two numbers have equal successors, they are equal.
5. If a set of numbers contains the number one and it contains all the successors of its members then the set contains all the numbers.

What is interesting is that this system does not have to be limited to number. Calvin C. Clawson in his book “Mathematical Sorcery: Revealing the Secrets of Numbers” gives us the same five statements in the following form:

1. Heinsforth is a gelb
2. If x is a gelb, the ranker of x is also a gelb.
3. Heinsforth is not the ranker of any gelb.
4. If two gelbs have equal rankers, they are equal.
5. If a set of gelbs contains the gelb Heinsforth and it contains all the rankers of its members then the set contains all the gelbs.

Clawson has substituted the number “one” with Heinsforth, the term “number” with “gelb” and used “ranker” in place of successor. The point that Clawson is trying to make is that we need not be concerned with the primitive notions per se. What we need to be concerned with is the relationship of these notions within the axiomatic structure. From what I understand there could be incalculable different ways to describe the primitive notions however, only one way to logically relate them to each other. After reading Clawson’s axioms, I became aware of the ability of this structure to create metaphor. The source domain of the metaphor is the Peano axioms. The target domain is the same set of axioms with poetic substitutions placed inside the axioms. Therefore, I have created the axiomatic poem shown below:

Let us replace “number” with “cat” let us also replace “successor” with “God”. Lastly, I am going to replace “One” with “Abraham”.

1. Abraham is a cat
2. If x is a cat, the God of x is also a cat.
3. Abraham is not the God of any cat.
4. If two cats have equal Gods, they are equal.
5. If a set of cats contains the cat Abraham and it contains all the Gods of its members then the set contains all the cats.

Now the next interesting idea is:

Can these axioms create interesting theorems?

Visit the National Gallery of Writing