Showing posts with label Polyaesthetics. Show all posts
Showing posts with label Polyaesthetics. Show all posts

Monday, March 02, 2015

The Purpose of Art


This may very well be the most important thing I have done and probably the least visible.

Saturday, October 22, 2011

The Celebrity

Here is a polyaesthetic piece with a proportional poem inside it. Yet I have made it to seem like a Orthogonal Space Poem with a ratio of Talent and Stupidity in the denominator.

The piece is titled "The Celebrity"


Monday, August 22, 2011

The New Culture

This is a most significant time in human history where cultural identity is rapidly moving from geographic locations to physically disparate cadres bound by beliefs and passions.

Wednesday, August 10, 2011

Polyaesthetic Mapping




This may be one of the most important things that I have ever done - This is the culmination of ten years of thinking about the aesthetics of math/science and art. I have been working on this project to show how one can map any aesthetic experience into a clear concise system.


You can access it at this link
.
.
.

Sunday, November 28, 2010

The Polyaesthetic Work Of Keith Tyson

Here is some polyaesthetic work I was recently turned on to. The artist, Keith Tyson won the Turner prize in England for his work and I am certainly happy that our genre is getting more attention. The poetic content reminds me of Scott Helmes's work yet this work is obviously polyaesthetic due to the mixture of visual images. Very Cool!









Tuesday, June 15, 2010

Whispers


Here is a recent polyaesthetic piece utilizing a "proportional poem" titled "Whispers"

Friday, September 05, 2008

What Is The Difference Between Multiplication And Addition In The Context Of Mathematical Poetry?

Before I talk about addition and multiplication in mathematical Visual Poetry I would like to present the following two paintings by Giorgio De Chirico. These were created in the beginning years of the 20th century.




     When I was visiting the inner harbor of Baltimore, Maryland I came across a most interesting tower. I later found the name to be "The Shot Tower". (Below)


      As you can see, it is tall, cylindrical and has a little flag on the top of it. It reminded me of the towers I have seen in many Giorgio De Chirico paintings. I only included two painting here in this blog post but, there are many more that can be found in art history books.
     So I got the idea to take it into Photoshop and turn the scene into a De Chirico-ish image.
I titled the piece: “THE QUESTION OF DE CHIRICO” and it poses the question: “Is the image on the right side of the piece equal to the ideas of Baltimore times De Chirico or is the image equal to the ideas of Baltimore plus De Chirico?



In my original post on this 'kogwork' I received a couple of responses that proved to me that it is an interesting question and the answer is not as esoteric as one might imagine. I will display and discuss the responses at the bottom of this blog entry.
     I gave a lecture on Polyaesthetics and Mathematical Poetry last year at the Salk Institute and within the boundaries of my presentation I had a section that addressed this very issue.   From that lecture I am going to borrow a few images to help illuminate this most interesting idea. Let us think about the equation 3 + 4 = 7 and let us look at a pie chart to help illuminate our quest. When we add 3 and 4 together we can distinctly see the separate pieces within the pie as well as seeing the entire seven pieces. (Shown below)

The Bottom line is that it is easy to remove the 3 slices or the 4 slices from the mix of 7 Now let us think about the equation 3 x 4 = 12 When it comes to multiplication our task gets a little trickier tracking where the numbers 3 and 4 end up (visually). The difficulty is due to them get integrated into each other to produce the number 12. It is though they form an augmentation from which each other play a part in constructing. If we look at a pie chart again we can see that the 12 pieces can be viewed as 4 groups of 3 or we can view it as 3 groups of 4. Both numbers influence the whole in their own way. Above we have 4 groups of 3 to yield the product of 12 Below we have 3 groups of 4 to yield the product of 12 So what we see is that the multiplier and the multiplicand both augment each other to produce the product. So how does all of this relate to mathematical poetry? How can we multiply concepts or even images? Let’s look at the next image titled "Americana Mathematics" and analyze its components. We see an the popular American icon depicting a NASCAR racing machine added to an 8 ball from the game of pool to yield a strange vehicle that is part race car and part pool table. Here in this example as in our pie chart we can see the two concepts added in such a way that it would be easy to pull them apart and break them out of the whole. The two concepts can be clearly separated in addition however; in multiplication it is again trickier. Let’s look at 8 x 8 = 64 Here again we can refer back to our pie charts showing how the multiplier and multiplicand each augment the other idea to create a whole that possesses much more amplitude than the originating two concepts. Here our product is not a race car but a rocket ship that is obviously involved in some sort of pool game. Now that we have the tools to understand the mechanics of this artwork we can then spend our time experiencing the interacting metaphors involved to come to our understanding of the signified. I now want to post two responses to the original question of De Chirico from the blog entry on August 7, 2008. The first being from the Math Poet TT.O. The text in Blue is from TT.O. and the text in white is mine My attempt at a solution to the difference in addition and multiplication in mathematical poetry is as follows:----- As the difference in nomenclature suggests, the above problem of A+B=C and A*B=C may be a issue of semantics, and in the case of "mathematical poetry" the said equations NOT equal. Consider One: A + B = C may mean let A abut B i.e. let image A physically touch image B, a kind of concatenation, a bringing together. Which would then go on to suggest that A + B = C1, and B + A = C2 since A + B ≠ B + A, and as their relative positions read from left-to-right would imply, the bringing together would result in an AB versus BA result. Notice that the collapse into a visual representation would suggest a kind of visual multiplication. I want to add for any mathematicians that are reading this -- when he says A + B ≠ B + A we all realize that this is definitely not true in pure mathematics however, it is debatable within the context of mathematical poetry due to syntax having some bearing on the results. From my perspective the influence of syntax is minimal when performing addition, although, I am willing to listen to all arguments. I will say that syntax is more important with multiplication. One can see the importance within the recent post I made called a+b+c does not equal c+b+a in this post our attention is brought to a problem with the order in which one experiences a phenomena. The author titled his observation a+b+c does not equal c+b+a however I believe that he should have realized what he was performing was multiplication not addition. Consider Two: A * B = C may depend on how it is read i.e. a issue of semantics (again) i.e. the number to be multiplied is called the "multiplicand", while the number of multiples is called the "multiplier". Perhaps this is better seen in the following equation A ( B + C ) = D. Here, the multiplier is A while the multiplicand is (B + C). The semantics of the equation would then suggest that ( B + C ) A ≠ A (B + C) in mathematical poetry, since it would depend on which was the multiplicand and which the multiplier, and in what order they were being taken to be (or read) i.e. what was to be infused by what, or what was to be increased by what i.e. a kind of what is being "acted on" (passive) and what active. Here TT.O. has provided a good argument to warrant attention being paid to the syntax of the equation within the context of mathematical poetry. However, there could be an argument that within the realm of pure math syntax makes no difference and therefore the poet needs to create his/her metaphor to reflect this mathematical truth. In other words make the product reflect an equal amount of the conceptual essence of the multiplier and multiplicand. From where I stand, in the equation A + B = C, A cannot infuse into B (or visa versa), but can only stand-by it. Multiplication, in the equation A * B = C, on the other hand (to carry on the metaphor) "impregnates" B but not visa versa. I don't understand your poem properly, because I don't understand the basic essence of De Chirico's work (i.e. a specific painting???) or who or what Baltimore is i.e. a City? An Artist? An attitude? However, I would suggest that Baltimore × De Chirico is different from De Chirico × Baltimore and different to Baltimore + De Chirico, and De Chirico + Baltimore, and that we should be mindful of it in our equation making. TT.O. I want to thank TT.O. for commenting on “The Question of De Chirico” and I must ask forgiveness for not explaining that the image is one of my photographs of a tower that resides on the inner harbor landscape in downtown Baltimore, Maryland USA. I modified the image to be in the style of the twentieth century painter Giorgio De Chirico. (See Google) Here is a few excerpts from a response from Todd Smith: Here's my take on it: The painting on the right seems to fit the style of the painter Giorgio de Chirico, so I assume that it is his work. If this is the case, I would vote for the equation: de Chirico (Baltimore) i.e., multiplication. Multiplication implies a combination (almost a mixing of two elements) and it generates something more than the sum of the two entities being combined. I would suggest that a snap shot of de Chirico with Baltimore in the background to be represented by the equation de Chirico + Baltimore. But a work of art produced by de Chirico in which Baltimore is featured would mean multiplication to me. The painting is as much de Chirico as it is Baltimore. The two are inextricably intertwined. Multiplication seems to be a more complex combination than addition to me. Two spools of thread might be added together when placed in a shopping bag, but they would be multiplied together if they were woven into a shirt. Here is an image (above) which illustrates Todd's idea of a mathematical weave between two axes. The image is titled "Distance" and it uses the distace equation: Distance = velocity multiplied by time. Also, addition seems to be one-dimensional, while multiplication seems to create two dimensions. Addition happens along the number line, while multiplication can be graphed along the x and y axis. They say you can't add apples and oranges. In addition you have to find a common denominator before you can add. This implies the number line again. As soon as two things are on the same dimension they can be added. For example, de Chirico and Baltimore are both physical things and so they can both be photographed together and said to be "added together" in the picture. But with multiplication there is less restriction. You don't need a common denominator to multiply two things. The combination creates something new that is not merely more quantity of a common denominator. In pure mathematics 3 x 4 creates a rectangle of area 12. Before there were only lines (one dimension), after multiplication there is area (two dimensions). New space is created. In the example of de Chirico, Baltimore x de Chirico created a new vision of Baltimore colored by de Chirico's own inspiration. No one had seen Baltimore in quite the same way. It is as if a new dimension was opened when these two were combined. Well, I didn't plan to write this much, but it's fun to think about. Thanks, Todd

I also want to thank Todd Smith for his wonderful comments as well. I think the point that we all would like to assert is that this idea of adding and multiplying images (or concepts) is easy to understand. I would love to see more from everyone out there.

Thanks. Kaz

Thursday, August 21, 2008

The Lotto


Here is a polyaesthetic piece of mathematical visual poetry based on the similar triangles poem titled “LOTTO” The photo was shot in Las Vegas. The inspiration for the piece came while being part of a shared "lotto pot" in an office setting. Watching all of the people fantasizing about winning was fascinating.

The poem can be read multiple ways including the following:

The lotto is to financial fantasy as ogling pornograpy is to sexual fantasy. 
-or-
The lotto is to ogling pornograpy as financial fantasy is to sexual fantasy.

Saturday, August 09, 2008

Freshness


Here is a Polyaesthetic piece with a 'Similar Triangles Poem' titled "Freshness"

Monday, July 14, 2008

Natural Selection


This entry is a polyaesthetic piece titled "Natural Selection" the structure of the poem inside is a similar triangle poem.

Read Me First



Read me first

In this section of the side bar there are four articles.

The first article is a paper that was published in the journal of mathematics and the arts titled “Polyaesthetics and Mathematical Poetry”. This paper is a good introduction to Mathematical Poetry for it shows some of the main ideas as well as some techniques used to create mathematical poetry. One of the more important ideas it addresses is that of mathematical metaphor. The paper addresses basic theory as well as providing examples.

The second article is a paper published in the 2006 Bridges Proceedings titled “Verbogeometry, The confluence of words and analytic geometry This paper explains the mechanics of how mathematical poetry can use Cartesian space as a medium for words. It provides examples of analytic geometry as well as the mathematical poetic counterpart.

The third article is an interview published online at word for/word a journal of new writing. The interview was conducted by poet/theoretician Gregory Vincent Thomasino and is formulated in three groups of questions. The first group of questions is about the influences of Kaz Maslanka and the second and third address mathematical poetic theory.

The forth article is a list of terminology that is related to the area where the arts and mathematics meet.

Monday, March 10, 2008

Bravery


Here is the orthogonal space poem "Bravery" realized as a polyaesthetic work.

Wednesday, February 13, 2008

Download Polyaesthetics and Mathematical Poetry

In March of 2007 I announced “Polyaesthetics and Mathematical Poetry.” published by Taylor and Francis in the Journal of Mathematics and the Arts Edited by Professor Gary Greenfield. This paper outlines many of the basic principles of mathematical poetry and polyaesthetics.

The contents of the paper are available for downloaded free at this link.

Journal of Mathematics and the Arts published “Polyaesthetics and Mathematical Poetry” March 2007 Volume 1 Number 1 ISSN 1751-3472

The published paper can be purchased at this link.

Saturday, November 10, 2007

개꿈 The American Mathematical Society Has Accepted “DOG DREAM” And “TEMPTATION”

I am grateful and honored that the American Mathematical Society has accepted “DOG DREAM” (above) and “TEMPTATION” (below) to the 2008 art exhibition, which is concurrent with the 2008 AMS conference which takes place in January of 2008.

Both poems are in the form of an orthogonal space poem.

Monday, April 09, 2007

Polyaesthetics and Mathematical Poetry


I am pleased to announce that the paper I wrote on “Polyaesthetics and Mathematical Poetry” was accepted into the Journal of Mathematics and the Arts. It is now available at the following link :

Visit the National Gallery of Writing